sábado, 15 de marzo de 2014

¿Cuáles son los tipos de reactores que existen?





1.       De fisión


  • LWR - Light Water Reactors (Reactores de agua ligera): utilizan como refrigerante y moderador el agua. Como combustible uranio enriquecido. Los más utilizados son los PWR (Pressure Water Reactor o reactores de agua a presión) y los BWR (Boiling Water Reactor o reactores de agua en ebullición): 264 PWR y 94 BWR en funcionamiento en el 2007.
  • CANDU - Canada Deuterium Uranium (Canadá deuterio uranio): Utilizan como moderador y refrigerante agua pesada (compuesta por dos átomos de deuterio y uno de oxígeno). Como combustible utilizan uranio natural: 43 en funcionamiento en el 2007.
  • FBR - Fast Breeder Reactors (reactores rápidos realimentados): utilizan neutrones rápidos en lugar de térmicos para la consecución de la fisión. Como combustible utiliza plutonio y como refrigerante sodio líquido. Este reactor no necesita moderador: 4 operativos en el 2007. Solo uno en operación.
  • AGR - Advanced Gas-cooled Reactor (reactor refrigerado por gas avanzado): usa uranio como combustible. Como refrigerante utiliza CO2 y como moderador grafito: 18 en funcionamiento en el 2007.
  • RBMK - Reactor Bolshoy Moshchnosty Kanalny (reactor de canales de alta potencia): su principal función es la producción de plutonio, y como subproducto genera energía eléctrica. Utiliza grafito como moderador y agua como refrigerante. Uranio enriquecido como combustible. Puede recargarse en marcha. Tiene un coeficiente de reactividad positivo. El reactor de Chernóbil era de este tipo. Existían 12 en funcionamiento en el 2007.
  • ADS - Accelerator Driven System (sistema asistido por acelerador): utiliza una masa subcrítica de torio, en la que se produce la fisión solo por la introducción, mediante aceleradores de partículas, de neutrones en el reactor. Se encuentran en fase de experimentación, y se prevé que una de sus funciones fundamentales sería la eliminación de los residuos nucleares producidos en otros reactores de fisión.



2.       De fusión:

Instalación destinada a la producción de energía mediante la fusión nuclear. Tras más de 60 años de investigación en este campo, se ha logrado mantener una reacción controlada, si bien aún no es energéticamente rentable.
La mayor dificultad se encuentra en soportar la enorme presión y temperatura que requiere una fusión nuclear (que sólo es posible encontrar de forma natural en el núcleo de una estrella). Además este proceso requiere una enorme inyección de energía inicial (aunque luego se podría automantener ya que la energía desprendida es mucho mayor)
Actualmente existen dos líneas de investigación, el confinamiento inercial y el confinamiento magnético.
El confinamiento inercial consiste en contener la fusión mediante el empuje de partículas o de rayos láser proyectados contra una partícula de combustible, que provocan su ignición instantánea.
Los dos proyectos más importantes a nivel mundial son el NIF (National Ignition Facility) en EE.UU. y el LMJ (Laser Mega Joule) en Francia.
El confinamiento magnético consiste en contener el material a fusionar en un campo magnético mientras se le hace alcanzar la temperatura y presión necesarias. El hidrógeno a estas temperaturas alcanza el estado de plasma.
Los primeros modelos magnéticos, americanos, conocidos como Stellarator generaban el campo directamente en un reactor toroidal, con el problema de que el plasma se filtraba entre las líneas del campo.
Los ingenieros rusos mejoraron este modelo dando paso al Tokamak en el que un arrollamiento de bobina primario inducía el campo sobre el plasma, aprovechando que es conductor, y utilizándolo de hecho como un arrollamiento secundario. Además la resistencia eléctrica del plasma lo calentaba.
El mayor reactor de este tipo, el JET (toro europeo conjunto) ha conseguido condiciones de fusión nuclear con un factor Q>0,7. Esto significa que el ratio entre la energía generada por fusión y la requerida para sostener la reacción es de 0.7. Para que la reacción se auto sostenga deben alcanzarse parámetros superiores a Q>1 y más aún para su viabilidad económica. El primer objetivo debe ser alcanzado con el proyecto ITER y el segundo con DEMO.
Se ha comprometido la creación de un reactor aun mayor, el ITER uniendo el esfuerzo internacional para lograr la fusión. Aun en el caso de lograrlo seguiría siendo un reactor experimental y habría que construir otro prototipo para probar la generación de energía, el llamado proyecto DEMO.

¿Para qué sirve un reactor nuclear?




1.       Generación nuclear:
·         Producción de calor para la generación de energía eléctrica
·         Producción de calor para uso doméstico e industrial [cita requerida]
·         Producción de hidrógeno mediante electrólisis de alta temperatura
·         Desalación
2.       Propulsión nuclear:
·         Marítima
·         Cohetes de propulsión térmica nuclear (propuesta).
·         Cohetes de propulsión nuclear pulsada (propuesta).
3.       Transmutación de elementos:
·         Producción de plutonio, utilizado para la fabricación de combustible de otros reactores o de armamento nuclear
·         Creación de diversos isótopos radiactivos, como el americio utilizado en los detectores de humo, o el cobalto-60 y otros que se utilizan en los tratamientos médicos
4.       Aplicaciones de investigación, incluyendo:
·         Su uso como fuentes de neutrones y de positrones (p. ej. para su uso de análisis mediante activación neutrónica o para el datado por el método de datación potasio-argón).
·         Desarrollo de tecnología nuclear.

¿Sabes qué es un reactor nuclear?




Un reactor nuclear es un dispositivo en donde se produce una reacción nuclear en cadena controlada. Se puede utilizar para la obtención de energía en las denominadas centrales nucleares, la producción de materiales fisionables, como el plutonio, para ser usados en armamento nuclear, la propulsión de buques o de satélites artificiales o la investigación. Una central nuclear puede tener varios reactores. Actualmente solo producen energía de forma comercial los reactores nucleares de fisión, aunque existen reactores nucleares de fusión experimentales.

También podría decirse que es una instalación física donde se produce, mantiene y controla una reacción nuclear en cadena. Por lo tanto, en un reactor nuclear se utiliza un combustible adecuado que permita asegurar la normal producción de energía generada por las sucesivas fisiones. Algunos reactores pueden disipar el calor obtenido de las fisiones, otros sin embargo utilizan el calor para producir energía eléctrica.
La potencia de un reactor de fisión puede variar desde unos pocos kW térmicos a unos 4500 MW térmicos (1500 MW "eléctricos"). Deben ser instalados en zonas cercanas al agua, como cualquier central térmica, para refrigerar el circuito, y deben ser emplazados en zonas sísmicamente estables para evitar accidentes. Poseen grandes medidas de seguridad. No emiten gases que dañen la atmósfera pero producen residuos radiactivos que duran decenas de miles de años, y que deben ser almacenados para su posterior uso en reactores avanzados y así reducir su tiempo de vida a unos cuantos cientos de años.

El primer prototipo de reactor nuclear fue construido por Enrico Fermi, sin embargo no fue el primero que funcionó en la Tierra. En Oklo hay evidencias1 de que en la Tierra se produjeron reactores nucleares naturales hace 2000 millones de años